Creep resistance of cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys at 300–400 C

نویسندگان

  • Keith E. Knipling
  • David C. Dunand
چکیده

Cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys, upon compressive creep deformation at 300–400 C, exhibit threshold stresses attributable to climb-controlled bypass of coherent Al3Zr and Al3(Zr1 xTix) precipitates. Al–0.1Zr–0.1Ti exhibits a smaller threshold stress than Al–0.1Zr, which is attributed principally to a reduced lattice parameter mismatch between the Al3(Zr1 xTix) precipitates and the matrix. The present alloys are less creep resistant than Al–Sc and Al–Sc–Zr/Ti alloys with similar precipitate radii and volume fractions. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 C

The transformation of Al3Zr (L12) and Al3(Zr1 xTix) (L12) precipitates to their respective equilibrium D023 structures is investigated in conventionally solidified Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys aged isothermally at 500 C or aged isochronally in the range 300– 600 C. Titanium additions delay neither coarsening of the metastable L12 precipitates nor their transformation to the D023 st...

متن کامل

Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging

Precipitation strengthening is investigated in binary Al–0.1Sc, Al–0.1Zr and ternary Al–0.1Sc–0.1Zr (at.%) alloys aged isochronally between 200 and 600 C. Precipitation of Al3Sc (L12) commences between 200 and 250 C in Al–0.1Sc, reaching a 670 MPa peak microhardness at 325 C. For Al–0.1Zr, precipitation of Al3Zr (L12) initiates between 350 and 375 C, resulting in a 420 MPa peak microhardness at...

متن کامل

Atom probe tomographic studies of precipitation in Al-0.1Zr-0.1Ti (at.%) alloys.

Atom probe tomography was utilized to measure directly the chemical compositions of Al(3)(Zr(1)-(x)Ti(x)) precipitates with a metastable L1(2) structure formed in Al-0.1Zr-0.1Ti (at.%) alloys upon aging at 375 degrees C or 425 degrees C. The alloys exhibit an inhomogeneous distribution of Al(3)(Zr(1)-(x)Ti(x)) precipitates, as a result of a nonuniform dendritic distribution of solute atoms afte...

متن کامل

Development of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates

Development of a Nanoscale Precipitation-Strengthened Creep-Resistant Aluminum Alloy Containing Trialuminide Precipitates Keith Edward Knipling This research is toward developing a castable andheat-treatable precipitation-strengthened aluminum alloy exhibiting coarseningand creep resistance at temperatures exceeding 400°C. Criteria for selecting alloying elements capable of producing such an al...

متن کامل

The Effect of Artificial Aging Treatment and Lubrication Modes on the Cutting Force and the Chip Surface Morphology when Drilling Al-Si-Mg (A356) Cast Alloys

This article reports the effects of various artificial aging methods and lubrication modes (dry, mist, wet) on the recorded cutting forces and chip morphology in drilling Al-Si-Mg (A356) cast alloys. In the course of this work, the work part sampled were as-received alloy (T0), solution heat-treated alloy (SHT) and then aged alloys at 155°C, 180°C, and 220°C (T4, T6, T61, T7), respectively. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008